Tracking discontinuities in hyperbolic conservation laws with spectral accuracy
نویسندگان
چکیده
It is well known that the spectral solutions of conservation laws have the attractive distinguishing property of infiniteorder convergence (also called spectral accuracy) when they are smooth (e.g., [C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods for Fluid Dynamics, Springer-Verlag, Heidelberg, 1988; J.P. Boyd, Chebyshev and Fourier Spectral Methods, second ed., Dover, New York, 2001; C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin Heidelberg, 2006]). If a discontinuity or a shock is present in the solution, this advantage is lost. There have been attempts to recover exponential convergence in such cases with rather limited success. The aim of this paper is to propose a discontinuous spectral element method coupled with a level set procedure, which tracks discontinuities in the solution of nonlinear hyperbolic conservation laws with spectral convergence in space. Spectral convergence is demonstrated in the case of the inviscid Burgers equation and the one-dimensional Euler equations. 2007 Elsevier Inc. All rights reserved.
منابع مشابه
A total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملThe efficient implementation of a finite element, multi-resolution viscosity method for hyperbolic conservation laws
It is well known that the classic Galerkin finite element method is unstable when applied to hyperbolic conservation laws such as the Euler equations for compressible flows. Adding a diffusion term to the equations stabilizes the method but sacrifices too much accuracy to be of any practical use. An elegant solution developed in the context of spectral methods by Eitan Tadmor and coworkers is t...
متن کاملA Level Set Algorithm for Tracking Discontinuities in Hyperbolic Conservation Laws I: Scalar Equations
A level set algorithm for tracking discontinuities in hyperbolic conservation laws is presented. The algorithm uses a simple finite difference approach, analogous to the method of lines scheme presented in [20]. The zero of a level set function is used to specify the location of the discontinuity. Since a level set function is used to describe the front location, no extra data structures are ne...
متن کاملShock Detection and Limiting with Discontinuous Galerkin Methods for Hyperbolic Conservation Laws
We describe a strategy for detecting discontinuities and for limiting spurious oscillations near such discontinuities when solving hyperbolic systems of conservation laws by high-order discontinuous Galerkin methods. The approach is based on a strong superconvergence at the outflow boundary of each element in smooth regions of the flow. By detecting discontinuities in such variables as density ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 225 شماره
صفحات -
تاریخ انتشار 2007